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Abstract—This research presents a method for classifying
malicious and benign binary files using Convolutional Neural
Networks (CNNs), transitioning from binary to multiclass classifi-
cation. Three datasets—EMBER, BODMAS, and MALIMG—are
used, with EMBER and BODMAS serving as training and testing
sets for the base model. Data from these datasets is converted into
image representations and analyzed by CNN models, achieving
a high accuracy of 98%.

A transfer learning model is then developed, incorporating
knowledge from EMBER and BODMAS. This model reduces
training time significantly and achieves 97% accuracy with just
5 epochs and a batch size of 25 across 25 malware family
sets, averaging a perfect AUC of 1.00. This indicates perfect
discrimination between positive and negative classes, with 100%
correct predictions, underscoring the robustness of the method.

The research highlights the significance of performance and
accuracy in transfer learning, demonstrating how adapting ex-
isting models to new datasets can enhance results. By addressing
current challenges in malware classification, such as high vari-
ability and the need for efficient detection methods, this research
shows how refining a base model on a new dataset showcases the
flexibility and adaptability of transfer learning in solving diverse
classification problems.

Our approach contributes to the machine learning field by
demonstrating how transfer learning can significantly improve
accuracy and efficiency in classification tasks, potentially leading
to more effective and adaptive AI systems in various applications.

Index Terms—Convolutional Neural Networks, Malware De-
tection, Transfer Learning, Cyber Security, Ember Dataset,
BODMAS Dataset, MALIMG Dataset.

I. INTRODUCTION

The ever-changing landscape in technology has led to a
significant rise in cyber threats, underscoring the urgent need
for efficient methods to detect and classify malware. Tradi-
tional approaches often struggle to keep pace with the diverse
and evolving nature of these threats. This research delves
into leveraging Convolutional Neural Networks (CNNs) for
transfer learning in classification tasks, specifically focusing
on the nuanced distinction among various classes of malware.

Motivated by the limitations of binary classification in
capturing the complexity of modern malware variants, this
research transitions to multi-class classification. This approach
allows for a more detailed and granular analysis, essential
for robust cybersecurity measures. We utilize three pivotal
datasets—EMBER, BODMAS, and MALIMG—employing
EMBER and BODMAS for training and testing our model.
These datasets are transformed into image representations and
subjected to CNN models, achieving a remarkable level of
accuracy.

Building upon the insights gained from our base model, we
develop a transfer learning framework that not only drasti-
cally reduces training time but also achieves an outstanding
accuracy rate of 97% after just 5 epochs. This framework
demonstrates the model’s capability to adapt and improve
performance by leveraging previously acquired features when
confronted with new datasets.

The methodology of this research critically examines trans-
fer learning by fine-tuning a base model on a new dataset,
illustrating how pre-existing knowledge can enhance model
effectiveness in diverse classification tasks. Comparative anal-
ysis between the tuned model and the original model provides
a comprehensive evaluation of transfer learning’s efficacy in
this context.

This research contributes significantly to the field of ma-
chine learning by showcasing how transfer learning can sig-
nificantly improve accuracy and efficiency in classification
tasks, potentially leading to more effective and adaptive AI
systems in various applications with emphasis on sophisticated
detection in the face of evolving cyber threats.

II. RELATED WORK

Wang et al. [1] proposed a malware classification method
based on transfer learning for multi-channel image vision
features and ResNet convolutional neural networks, which
can better extract the texture features of malware, effectively



improve the accuracy and detection efficiency. A new frame-
work utilizes transfer learning for visual classification of multi-
channel malware, enhancing detection efficiency and accuracy,
achieving 99.99% accuracy on the Microsoft BIG benchmark
dataset.

Priya et al. [2], transfer learning was used for zero-day
malware detection, where malware binaries are turned into
grayscale images before being processed using models for
classification based on transfer learning. The paper explores
using transfer learning with models like AlexNet, VGG16,
VGG19, GoogLeNet, and ResNet for malware classification
by converting malware binaries into grayscale images.

[3] Proposed a malware detection method based on transfer
learning where they use the pre-trained deep convolutional-
based AlexNet architecture having ImageNet weights for fea-
ture extraction. The proposed transfer learning-based method
effectively classifies malware into their families. The perfor-
mance of the suggested model is compared to other contem-
porary ImageNet models.

[4] The authors compared the performance of various
machine learning and deep learning technologies towards
malware classification such as Logistic Regression (LR), Ar-
tificial Neural Networks (ANN), Convolutional Neural Net-
work (CNN), transfer learning on CNN and Long Short
Term Memory (LSTM). Transfer learning using InceptionV3
achieved high accuracy (98.76% test, 99.6% train) for malware
classification, outperforming LSTM and other models in the
research.

[5] The authors proposed a novel ensemble model, Stacked
Ensemble (SE-AGM), composed of three light-weight neural
network models (autoencoder, GRU, and MLP) for malware
detection. Transfer learning was utilized for malware detection
in IoT using a stacked ensemble model trained on essential
features extracted from the MalImg dataset, achieving a high
accuracy of 99.43

[6] A new method based on Markov image and transfer
learning on machine learning was proposed for malware
detection and classification, and an experience comparing the
performance of the proposed and grayscale methods was done.
The paper proposes a method using Markov image and transfer
learning for malware detection and classification, achieving
high accuracy (0.973) and low loss (0.076), showing suitability
for classification tasks.

AlGarni et al. [7] Efficient Convolutional Neural Network
with Transfer Learning is utilized for malware classification,
achieving a high accuracy of 99.93% by classifying malware
families using pre-trained models. The role of deep convolu-
tion neural networks in malware classification and solutions
for utilizing machine learning to detect and classify malware
families through transfer learning are discussed.

Wang et al. [8] as mentioned in this paper implemented sev-
eral EffiicientNet models into two types of Malware BIG 2015
that had been visualized into grayscale and RGB format, they
found that EfficientNetB7 implemented into RGB dataset got
99.63% of accuracy, 98.36% of precision, 99.835% of recall,
98.34% of F1-score, and 98.30% of AUC, with only takes 10

epochs in the training process.EfficientNet, a transfer learning
model, achieved 99.63% accuracy in malware classification
using RGB datasets, outperforming other models with only
10 training epochs.

III. METHODOLOGY

The first step in developing the base model is to acquire the
necessary data. This involves obtaining the training dataset
from EMBER [10] and storing it in a specific directory.
The dataset consists of 800,000 samples, each described by
feature vectors and matching labels. Any entries without labels
are removed from the dataset. Similarly, the test dataset,
comprising 134,435 samples from BODMAS [11], is obtained
from a specific directory, with any unlabeled entries also being
removed from this dataset if relevant as shown in Figure 1

Fig. 1. EMBER BODMAS Dataset

After collecting the data, it goes through a procedure called
pre-processing. This involves splitting the training dataset into
two subsets: the training subset and the validation subset.
The split is done according to a preset ratio. The data is
normalized using the ‘StandardScaler‘. This method ensures
that all features have a mean of 0 and a standard deviation
of 1. Furthermore, the data is transformed to match the input
specifications of the Conv2D layer in the CNN model.

The next step is creating the model architecture using the
‘Keras‘ API. This design includes ‘Conv2D‘ layers for extract-
ing features, ‘BatchNormalization‘ layers for normalizing, and
‘Dense‘ layers for classification. In order to address the issue
of overfitting, the technique of L2 regularization is employed.
The hyperparameters of the model, such as the learning rate,
number of epochs, and batch size, are also specified.

The model is subsequently constructed using the ‘Adam
optimizer‘, employing the sparse categorical crossentropy loss
function, and evaluating its performance based on accuracy.
The model is then trained using the training data, while the
validation data is used to monitor the model’s performance
and prevent overfitting.

After the training process, the model produces predictions
on the test data. To assess the model’s performance, various
performance measures such as the ROC curve, AUC, and
confusion matrix(see Figure 5) are calculated.



The methodology also utilizes transfer learning by employ-
ing the pre-trained model as a base for additional training on
a new dataset as shown in Figure 2

Fig. 2. MALIMG Dataset

This dataset consists of 7459 samples, with 25 different
classes of malware families. The dataset is divided into 5221
training samples and 2238 test samples as shown in Figure 2.
The dataset is effectively loaded and preprocessed using the
ImageDataGenerator class from Keras. This includes resizing
the images to a uniform size of 64x64 pixels and normalizing
the data to ensure consistency in the input features. The
preprocessing stage is crucial in preparing the dataset for
further analysis and training of models.

After obtaining and preparing the dataset, an exploratory
data analysis is performed. This stage is important for un-
derstanding the distribution of classes within the dataset and
visually examining a subset of the malwares as shown in
Figure 3

Fig. 3. MALIMG Malware Distribution

Transfer learning is employed by adapting a pre-trained
model to the new task. This process involves modifying the
initial and final layers and incorporating two new layers to suit
the specific requirements of the task. Subsequently, the model

TABLE I
BASE MODEL PERFORMANCE METRICS FOR THE MODEL

Metric Value

Train Loss 0.1082
Train Accuracy 0.9726
Validation Loss 0.2452
Validation Accuracy 0.9310
Test Loss 0.1143
Test Accuracy 0.9790

Fig. 4. Base Model Performance Graph

is trained on the new dataset and assessed using comparable
metrics to those employed for the original model .

The training performance, ROC curve, and confusion matrix
are graphically shown to offer a deeper understanding of the
model’s learning progress and effectiveness.

IV. IMPLEMENTATION

Our transfer learning approach for malware classification
incorporates data from both EMBER and BODMAS. The
training dataset comprises 800,000 samples. The test dataset
consists of around 134,435 samples which were used to build
the base model.

Once the data is retrieved, it is partitioned into three distinct
sets: training, validation, and test. A substantial proportion of
the data is assigned to the validation set in order to assess the
model’s performance throughout training. The input features
are normalized using the StandardScaler function from the
’sklearn.preprocessing’ library. This is done to ensure that all
features are scaled uniformly, which is crucial for the optimal
performance of neural network models. The data is converted
to align with the specifications of Conv2D layers. Transformed
into a 2D tensor to facilitate convolutional processes.

The fundamental architecture consists of two Conv2D layers
with ReLU activation functions, each of which is subsequently
followed by BatchNormalization to retrieve information. A
Flatten layer transforms 2D feature maps into a 1D vector.
The base model consists of several interconnected layers
using rectified linear unit (ReLU) activation functions. Batch
normalization is applied after each layer, except for the



Fig. 5. Base Model ROC

last layer, which utilizes a softmax activation function for
binary classification. L2 regularization is implemented in all
layers, excluding the input layer, to mitigate overfitting. The
base model is compiled using the Adam optimizer, sparse
categorical crossentropy loss function, and accuracy as the
evaluation metric. The training process consists of multiple
epochs, where each epoch involves processing a batch of data
from both the training and validation datasets. The model
defines hyperparameters such as learning rate, batch size, and
batch size. As an illustration, the learning rate is set to 0.001,
the number of epochs is set to 50, and the batch size is set
to 1000 based on manual adjustments during training. Our
base model shows consistent improvement in both training
and validation accuracies suggesting that the model is learning
relevant patterns from the data without significant overfitting
as shown in Figure 4.

In order to assess the model’s performance, we examine
the test dataset to determine metrics such as accuracy, loss,
and other pertinent measures. The Receiver Operating Char-
acteristic (ROC) curve and Area Under the Curve (AUC) are
employed to evaluate the model’s ability to differentiate across
classes. The high AUC values indicate better discrimination
between classes. The smooth ROC curve across training and
validation sets suggests good generalization ability of the base
model as shown in Figure 5

During our research’s subsequent stage, transfer learning
is utilized by modifying the base model to fulfill the needs
of the MALIMG task as shown in Figure 6. This process
entails the removal of layers from both the beginning and end
of the base model and the incorporation of layers each for
the respective ones previously removed that are specifically
designed for MALIMG.

The transfer learning model is improved by incorporating
additional layers, such as enabling the model to function in

inference mode and providing a layer for multi-class clas-
sification. Adjusting the updated model entails utilizing the
same Adam optimizer, employing the categorical crossentropy
loss function, and evaluating correctness. Model checkpoints
are utilized to store the model according to its validation
accuracy. During the training, it was necessary to adjust the
hyperparameters, such as the learning rate, epochs, and batch
size. As an illustration, in the context of our transfer learning,
we opted to leave the learning rate to 0.001 as is from the base
model(pre-trained model), training the transfer learning model
for 5 epochs, and utilizing a batch size of 32 employing a
callback function to store the model according to the validation
accuracy.

Fig. 6. Transfer Learning Model Architecture

V. RESULTS AND EVALUATION

The transfer learning model demonstrates high performance,
across training, validation and test datasets consistently achiev-
ing over 96% accuracy as shown in Figure 8. This indicates
performance on both unfamiliar and unseen data. The loss
values are relatively low suggesting a good fit with room
for improvement. The consistency between validation and test
metrics indicating minimal overfitting and solid generalization
capabilities.



A detailed breakdown of classification metrics reveals pre-
cision, recall and F1 scores of 1.00 for classes such as 0, 1
2 5 8 9 11 12 14 16 17 18 and 24. Class 3 exhibits near
perfect metrics with a decrease in recall (0.99) resulting in
an F1 score of 0.99. Class 4 shows a minor decline in recall
(0.96) with an F1 score of 0.98 See Table IV. Classes 6 and
7 display considerably lower scores; Class 6 has aprecision of
0.76,arecall of 0.51 and an F1 score of 0.61; Class 7 has a
precision of 0.86, a recall of 0.91 and an F1 score of 0.88.
Classes 10, 13 and 15 experience slight reductions, in either
precision or recall while maintain F1 scores ranging from [97
- 99] See Table IV.

In clasees 19 and 23 there is a decrease, in effectiveness with
F1 scores of 0.97 and 0.89 because of reduced recall. Classes
20 and 21 have the lowest metrics with class 20 having a
precision of 0.50 recall of 0.66 and F1 score of 0.57 while
Class 21 has a precision of 0.43 recall of 0.49 and F1 score
of 0.46 See Table IV.

The overall accuracy score of 0.97 indicates performance
which is generally high. The average precision across all
categories is at a level of 0.94 along with recall and an F1
score at 0.93 treat all classes equally irrespective of support.
The model appears to perform well for most classes achieving
perfect precision, recall and F1 scores for many classes’ except
for the following; six (6) seven (7) twenty (20) and twenty-
one (21) which show notably lower performances indicating
challenges faced by the model in handling these specific
classes possibly due to data imbalance or class complexity
See Table IV..

To improve the performance in these classes data augmenta-
tion methods can be utilized to increase sample sizes for those
classes while implementing class specific enhancements, like
targeted feature extraction or custom loss functions could aid
in addressing difficulties posed by these challenging classes.
Adjusting the hyperparameters precisely and implementing
regularization methods could potentially lower the loss values.

The micro average ROC curve demonstrates an Area Under
the Curve (AUC) value of 1.0 showing how effectively our
model can distinguish between classes of malware family see
Figure 9.

Model Accuracy (%) Epochs Dataset
EfficientNetB7 99.63 10 Microsoft BIG benchmark dataset [8]
LSTM 99 500 MALIMG [14]
VGG16 88.40 30 MALIMG [16]
Custom model 98.7 25 MALIMG [16]
LSTM 99 321 MALIMG [17]
LSTM 94 30 Microsoft BIG benchmark dataset [17]
CNN 97 5 MALIMG (Ours)

TABLE II
COMPARISON OF THE ACHIEVED ACCURACY AND EPOCHS WITH THE

LITERATURE

Our transfer learning model as it exhibited exceptional
performance enhancements leveraging optimized hyperparam-
eters from the base model, namely by reducing the number
of epochs and setting the batch size to 5 and 32 respectively,
we were able to get impressive results in considerably shorter

TABLE III
TRANSFER LEARNING MODEL PERFORMANCE METRICS

Metric Value

Transfer Learning Train Loss 1.4020
Transfer Learning Train Accuracy 0.9753
Transfer Learning Validation Loss 1.3052
Transfer Learning Validation Accuracy 0.9692
Transfer Learning Test Loss 1.3052
Transfer Learning Test Accuracy 0.9692

Fig. 7. Transfer Learning Model Performance Graph

periods compared to other works with higher epochs. [8] [14]
[15] [16] [17]

Moreover, by using transfer learning and without careful hy-
perparameter tuning, we have significantly shown our model’s
performance making it more adaptable, to changing threat
landscapes with fewer epochs and performance implications.

VI. CONCLUSION

This research contributes significantly to advancing the field
of cybersecurity by demonstrating the effectiveness of transfer
learning combined with tailored hyperparameters in enhancing
the efficiency and accuracy of malware classification models.
By refining and adapting a foundational binary classification
model for multi-class classification using transfer learning, we
underscore the adaptability and scalability of this approach.
We demonstrated how existing neural network architectures
can be optimized and repurposed through transfer learning
to tackle complex and diverse malware family classification
tasks. This adaptation not only improves classification accu-
racy but also reduces the computational resources and time
required for model training, making it a practical solution for
real-world cybersecurity challenges.
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